
NATIONAL MDA ARCHITECTURE PLAN APPENDIX A – IMPLEMENTATION GUIDE

1

APPENDIX A -

IMPLEMENTATION GUIDE
This implementation guide is copied from the online implementation guide at
http://mise.mda.gov. Refer to the web site for the latest version.

The Implementation Guide contains the following Sections:

1. Introduction

2. Process Flows for Security, Publish/Update, Delete, Search, and Retrieve

3. Data Mapping

4. Code Overview

5. User Stories for Search

6. Interfacing with the Security Services

7. Interfacing with the Publication Service

8. Interfacing with the Delete Service

9. Interfacing with the Search Service

10. Interfacing with the Retrieve Service

11. Testing on the Test Service Platform

12. Going Live on the Integration Platform

 1. Introduction
Maritime security is a national priority that depends on the ability to efficiently, effectively, and
appropriately share and safeguard information among trusted maritime partners within the
Global Maritime Community of Interest (GMCOI). The Maritime Information Sharing
Environment (MISE) as defined in the National Maritime Architecture Plan enables secure,
standardized sharing of unclassified maritime information among a wide variety of federal, state
and local agencies as well as international participants. MISE employs NIEM-M exchange
models, representational state transfer (REST) services for publishing/consuming, and
attribute-based access control to facilitate information sharing and safeguarding with non-
provisioned users in a dynamic environment.

The purpose of this implementation guide is to provide practitioners with guidance and specific
examples for interfacing with MISE. Specifically, it shows how to create messages that conform
to the National Information Exchange Model (NIEM) Maritime IEPD formats, how to

http://mise.mda.gov/
https://mise.mda.gov/drupal/node/22
https://mise.mda.gov/drupal/node/23
https://mise.mda.gov/drupal/node/24
https://mise.mda.gov/drupal/node/25
https://mise.mda.gov/drupal/node/26
https://mise.mda.gov/drupal/node/27
https://mise.mda.gov/drupal/node/28
https://mise.mda.gov/drupal/node/29
https://mise.mda.gov/drupal/node/30
https://mise.mda.gov/drupal/node/31
https://mise.mda.gov/drupal/node/32
https://mise.mda.gov/drupal/node/33
http://niem.gov/

NATIONAL MDA ARCHITECTURE PLAN APPENDIX A – IMPLEMENTATION GUIDE

2

implement security to successfully access the environment, and how to interface with the
services to publish and consume messages from the environment.

For new practitioners it is recommended you start with Process Flows for Security,
Publish/Update, Delete, Search, and Retrieve and proceed in order through the implementation
guide.

 NIEM-M EXCHANGE MODELS 1.1.
To learn more about using the NIEM-M exchange models, where they can be downloaded, and
how to produce messages to adhere these standards review the section on Data Mapping.

 SERVICE INTERFACES 1.2.
To learn more about the service interfaces to share information via the MISE start with the
section on Process Flows for Security, Publish/Update, Delete, Search, and Retrieve, and then
visit the sections on Interfacing with the Publication Service , Interfacing with the Delete
Service, Interfacing with the Search Service, and Interfacing with the Retrieve Service.

 SECURITY SERVICES 1.1.
To learn more about interfacing with the MISE security services see the sections on Process
Flows for Security, Publish/Update, Delete, Search, and Retrieve and Interfacing with the
Security Services.

 2. Process Flows for Security, Publish/Update,
Delete, Search, and Retrieve

This section shows graphical representations of the major data provider and data consumer
interactions with the MISE services.

 SECURITY 2.1.

https://mise.mda.gov/drupal/node/23
https://mise.mda.gov/drupal/node/23
https://mise.mda.gov/drupal/node/24
https://mise.mda.gov/drupal/node/23
https://mise.mda.gov/drupal/node/drupal/node/28
https://mise.mda.gov/drupal/node/29
https://mise.mda.gov/drupal/node/29
https://mise.mda.gov/drupal/node/30
https://mise.mda.gov/drupal/node/31
https://mise.mda.gov/drupal/node/23
https://mise.mda.gov/drupal/node/23
https://mise.mda.gov/drupal/node/27
https://mise.mda.gov/drupal/node/27

NATIONAL MDA ARCHITECTURE PLAN APPENDIX A – IMPLEMENTATION GUIDE

3

 PUBLISH/UPDATE 2.2.

 DELETE 2.3.

NATIONAL MDA ARCHITECTURE PLAN APPENDIX A – IMPLEMENTATION GUIDE

4

 SEARCH AND RETRIEVE 2.4.

NATIONAL MDA ARCHITECTURE PLAN APPENDIX A – IMPLEMENTATION GUIDE

5

 3. Data Mapping

 OBTAIN THE LATEST NIEM-M MODELS 3.1.
The NIEM-M Maritime Domain Awareness (MDA) Enterprise Information Exchange Model
(EIEM) and Information Exchange Package Documentation (IEPD) are registered and available
for download from the NIEM IEPD Clearinghouse and the DoD Metadata Registry.

Quick links to download the artifacts:

 Download MDA Enterprise Information Exchange Model (EIEM)

 Download Notices of Arrival IEPD

 Download Indicators and Notifications IEPD

 Download Vessel Positions IEPD

 HOW TO MAP DATA TO NIEM MARITIME 3.2.
Suppose the following is a native vessel position report format. Data elements include ship's
identification, GPS position, course, speed, navigational status, and time-stamp. Sample XML
syntax is included below.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

<Track>

 <DateTime>2011-01-13T13:17:02.325Z</DateTime>

 <CountryMID>303</CountryMID>

 <RegionID>27</RegionID>

 <TrackInfo>

 <TrackInfoVessel>

 <VesselId>

 <MMSI>367354000</MMSI>

 </VesselId>

 <VesselAIS>

 <VesselDataDynamic>

 <Coordinate>

 <LAT>53.8782833</LAT>

 <LON>-166.538633</LON>

 </Coordinate>

 <COG>178</COG>

 <SOG>0.1</SOG>

 <HDT>228</HDT>

 <ROT>0</ROT>

 <NavStatus>Engine</NavStatus>

 <PosAcc>Low</PosAcc>

 </VesselDataDynamic>

 </VesselAIS>

 </TrackInfoVessel>

 </TrackInfo>

</Track>

As depicted in the logical diagram for the Position IEPD, Movement, Position, and Vessel
Identification are the three primary logical blocks included in a position report. Record
Metadata is included in every message type.

http://www.it.ojp.gov/framesets/iepd-clearinghouse-noClose.htm
http://niem.gtri.gatech.edu/niemtools/iepdt/display/container.iepd?ref=GatnX-RDHIg
http://niem.gtri.gatech.edu/niemtools/iepdt/display/container.iepd?ref=HnXnjZHZIvI
http://niem.gtri.gatech.edu/niemtools/iepdt/display/container.iepd?ref=9b1cqLlMbpg
http://niem.gtri.gatech.edu/niemtools/iepdt/display/container.iepd?ref=KpOEKUaWqZE

NATIONAL MDA ARCHITECTURE PLAN APPENDIX A – IMPLEMENTATION GUIDE

6

The first step is to use the Mapping Spreadsheet from the IEPD. In this example, we are
translating a track message into the NIEM format so we will be using the Position IEPD. Find
and open the component mapping spreadsheet.

The mapping spreadsheet provides the path for each element in the XML. Each tab corresponds
to a "block" in the logical diagram.

An example of the Mapping Spreadsheet is captured below:

Use the Position tab of the Mapping spreadsheet to determine the xml elements to represent the
position data in the position message type. For the example message the position is represented
as follows:

1

2

3

4

5

6

7

8

9

10

11

12

<mda:Position>

 <m:LocationPoint>

 <gml:Point gml:id="tp1">

 <gml:pos>53.8782833 -166.538633</gml:pos>

 </gml:Point>

 </m:LocationPoint>

 <mda:PositionSpeedMeasure>

 <nc:MeasureText>0.1</nc:MeasureText>

 <nc:SpeedUnitCode>kt</nc:SpeedUnitCode>

 </mda:PositionSpeedMeasure>

 <mda:PositionCourseMeasure>

 <nc:MeasureText>178</nc:MeasureText>

http://niem.gtri.gatech.edu/niemtools/iepd/display/container.iepd?ref=KpOEKUaWqZE

NATIONAL MDA ARCHITECTURE PLAN APPENDIX A – IMPLEMENTATION GUIDE

7

13

14

15

16

17

18

19

20

21

22

23

24

25

 <m:AngleUnitText>deg</m:AngleUnitText>

 </mda:PositionCourseMeasure>

 <mda:PositionHeadingMeasure>

 <nc:MeasureText>228</nc:MeasureText>

 <m:AngleUnitText>deg</m:AngleUnitText>

 </mda:PositionHeadingMeasure>

 <mda:PositionNavigationStatus>

 <nc:StatusText>Engine</nc:StatusText>

 </mda:PositionNavigationStatus>

 <mda:PositionDateTime>

 <nc:DateTime>2011-01-13T13:17:02.325Z</nc:DateTime>

 </mda:PositionDateTime>

</mda:Position>

If an element does not map to the NIEM format, it can be included in the expansion text if
desired.

To complete the message, we used the Vessel Information tab of the Mapping Spreadsheet to
complete translation. Vessel is represented as follows:

1

2

3

4

5

<mda:Vessel>

 <m:VesselAugmentation>

 <m:VesselMMSIText>367354000</m:VesselMMSIText>

 </m:VesselAugmentation>

</mda:Vessel>

Below is the full NIEM conformant Position Message.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

<?xml version="1.0" encoding="UTF-8"?>

<!--Sample Position instance corresponding to the Position version 3.2 IEPD -->

<posex:Message

 xsi:schemaLocation="http://niem

.gov/niem/domains/maritime/2.1/position/exchange/3.2

../XMLSchemas/exchange/3.2/position-exchange.xsd"

 xmlns:m="http://niem.gov/niem/domains/mari

time/2.1" xmlns:mda="http://niem.gov/niem/doma

ins/maritime/2.1/mda/3.2"

 xmlns:posex="http://niem

.gov/niem/domains/maritime/2.1/position/exchange/3.2"

 xmlns:nc="<a href="http://niem.gov/niem/niem-

core/2.0">http://niem.gov/niem/niem-core/2.0" xmlns:gml="http://www.opengis.net/gml/3.2"

 xmlns:ism="urn:us:gov:ic:ism" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

 mda:securityIndicatorText="LEI" mda:releasableNationsCode="USA"

 mda:releasableIndicator="true">

 <nc:DocumentCreationDate>

 <nc:Date>2011-12-01</nc:Date>

 </nc:DocumentCreationDate>

 <nc:DocumentExpirationDate>

 <nc:Date>2012-01-01</nc:Date>

 </nc:DocumentExpirationDate>

 <nc:DocumentCreator>

 <nc:EntityOrganization>

 <nc:OrganizationName>Example Organization</nc:OrganizationName>

 </nc:EntityOrganization>

 </nc:DocumentCreator>

http://niem.gov/niem/domains/maritime/2.1/position/exchange/3.2
http://niem.gov/niem/domains/maritime/2.1/position/exchange/3.2
http://niem.gov/niem/domains/maritime/2.1/position/exchange/3.2
http://niem.gov/niem/domains/maritime/2.1
http://niem.gov/niem/domains/maritime/2.1
http://niem.gov/niem/domains/maritime/2.1
http://niem.gov/niem/domains/maritime/2.1/mda/3.2
http://niem.gov/niem/domains/maritime/2.1/mda/3.2
http://niem.gov/niem/domains/maritime/2.1/mda/3.2
http://niem.gov/niem/domains/maritime/2.1/position/exchange/3.2
http://niem.gov/niem/domains/maritime/2.1/position/exchange/3.2
http://niem.gov/niem/domains/maritime/2.1/position/exchange/3.2
http://niem.gov/niem/niem-core/2.0
http://niem.gov/niem/niem-core/2.0
http://niem.gov/niem/niem-core/2.0
http://www.opengis.net/gml/3.2
http://www.opengis.net/gml/3.2
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance

NATIONAL MDA ARCHITECTURE PLAN APPENDIX A – IMPLEMENTATION GUIDE

8

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

 <mda:RecordIDURI>00000001</mda:RecordIDURI>

 <mda:MessageStatusCode>Initial</mda:MessageStatusCode>

 <mda:MessageSourceSystemName>Track Source</mda:MessageSourceSystemName>

 <mda:ICISMMarkings ism:classification="U"

 ism:ownerProducer="USA" />

 <mda:Vessel>

 <m:VesselAugmentation>

 <m:VesselMMSIText>367354000</m:VesselMMSIText>

 </m:VesselAugmentation>

 </mda:Vessel>

 <mda:Position>

 <m:LocationPoint>

 <gml:Point gml:id="tp1">

 <gml:pos>53.8782833 -166.538633</gml:pos>

 </gml:Point>

 </m:LocationPoint>

 <mda:PositionSpeedMeasure>

 <nc:MeasureText>0.1</nc:MeasureText>

 <nc:SpeedUnitCode>kt</nc:SpeedUnitCode>

 </mda:PositionSpeedMeasure>

 <mda:PositionCourseMeasure>

 <nc:MeasureText>178</nc:MeasureText>

 <m:AngleUnitText>deg</m:AngleUnitText>

 </mda:PositionCourseMeasure>

 <mda:PositionHeadingMeasure>

 <nc:MeasureText>228</nc:MeasureText>

 <m:AngleUnitText>deg</m:AngleUnitText>

 </mda:PositionHeadingMeasure>

 <mda:PositionNavigationStatus>

 <nc:StatusText>Engine</nc:StatusText>

 </mda:PositionNavigationStatus>

 <mda:PositionDateTime>

 <nc:DateTime>2011-01-13T13:17:02.325Z</nc:DateTime>

 </mda:PositionDateTime>

 </mda:Position>

</posex:Message>

 4. Code Overview
The MISE implementation team provides a client toolkit for interface to the MISE REST
services for Publish, Update, Delete, Search, and Retrieve. All operations are simply REST
operations to the correct endpoint.

The client toolkit is primarily designed to make interfacing with the security services easier. The
client toolkit is implemented in accordance with the following specifications. More information
about each of the specifications can be found in the links below.

 National MDA Architecture Attribute Specification

 National MDA Architecture Security Specification

 National MDA Architecture Publish Specification

 National MDA Architecture Search/Retrieve Specification

The client toolkit can be downloaded from the MDA Architecture tools page. The tools contain
a simple java project that demonstrates how to connect and make a GET request against the ISI
services. Two JAR files are included. The first is the MDAUtils JAR, which contains the MDA

https://mise.mda.gov/drupal/node/35
https://mise.mda.gov/drupal/node/38
https://mise.mda.gov/drupal/node/36
https://mise.mda.gov/drupal/node/37
https://mise.mda.gov/tools/

NATIONAL MDA ARCHITECTURE PLAN APPENDIX A – IMPLEMENTATION GUIDE

9

Architecture security implementation, the client REST toolkit, and all the necessary
dependencies. Additionally, the project also requires the included commons-io JAR, which
provides file handling utilities for reading and writing files.

The client toolkit is used in all of the following examples:

 Interfacing with the Security Services

 Interfacing with the Publication Service

 Interfacing with the Delete Service

 Interfacing with the Search Service

 Interfacing with the Retrieve Service

Please note that the current base URL for the MISE is /services/MDAService/, followed by
publish, search, or retrieve, as described in this guide.

 5. User Stories for Search
Prior to reading this section, read Process Flows for Security, Update, Delete, Search, and
Retrieve for a basic understanding of how information flows between the provider and
consumer.

This set of user stories calls out specific examples for search and retrieve for the information
products provided by the MISE. Examples for publish and delete are contained in the sections
that discuss those operations, as they are simple, one-time operations.

As noted in the National MDA Search/Retrieve Specification, these operations return the Atom
summary feeds of each of the information products. The full message for any of the summaries
would be accessed via a retrieve operation.

in each of the examples below, the URL is relative to the mise.mda.gov base path for MISE
service access. The placeholder $value is used in the place of query values.

 POSITION 5.1.
Return vessel position summary messages based on a
geospatial area and time window, to see last known
positions of all vessels within that geospatial area.

/search/pos?ulat=$value&ulng=$value&llat=$value&llng=
$value&start=$value&end=$value

Retrieve a full vessel position message from the URL in a
position summary for full details on a specific vessel.

/retrieve/pos?entityid=$eid&recordid=$posid

Retrieve the most recent vessel position summary data
for each vessel that has updated in the last 30 seconds in
the geographic area of interest.

/search/pos?ulat=$value&ulng=$value&llat=$value&llng=
$value&start=$value&end=$value start, end should be
the last 30 seconds

 INDICATORS AND NOTIFICATIONS 5.2.
Retrieve a summary of IANs about all vessels in a specific /search/ian?ulat=$value&ulng=$value&llat=$value&llng=

https://mise.mda.gov/drupal/node/27
https://mise.mda.gov/drupal/node/28
https://mise.mda.gov/drupal/node/29
https://mise.mda.gov/drupal/node/30
https://mise.mda.gov/drupal/node/31
https://mise.mda.gov/drupal/node/23
https://mise.mda.gov/drupal/node/23
https://mise.mda.gov/drupal/node/37

NATIONAL MDA ARCHITECTURE PLAN APPENDIX A – IMPLEMENTATION GUIDE

10

geospatial area. $value &start=$value&end=$value

Retrieve a summary message for vessels with a specific
threat level within a geospatial area. Note that $threat in
the following example must align with one of the threat
values available in the IAN schema.

/search/ian?ulat=$value&ulng=$value&llat=$value&llng=
$value&$threat=$value

 NOTICE OF ARRIVAL 5.3.
Retrieve a summary message of all vessels inbound to a
specified port.

/search/noa?PortCodeText=$value&start=$value&end=$v
alue

Retrieve a summary message of all pending notices of
arrival for a specified vessel.

/search/noa?VesselNameText=$value&VesselMMSIText=
$value &VesselIMONumberText=$value

Retrieve a summary of IANs of all vessels in a specific
geospatial area that are carrying certain dangerous cargo
(CDC).

/search/ian?ulat=$value&ulng=$value&llat=$value&llng=
$value
&start=$value&end=$value&VesselCDCCargoOnboardI
ndicator=true

Retrieve a summary message based on a specified vessel
and port for which any data element has been updated in
the last 10 minutes.

/search/noa?start=$value&end=$value&PortCodeText=$v
alue&VesselNameText=$value
&VesselMMSIText=$value&VesselIMONumberText=$v
alue start, end should be the last 10 minutes

*Note that any combination of MMSI, IMO, and Name can be used, all three are not required.

 LEVELS OF AWARENESS 5.4.
Retrieve a summary message for all vessels in a specified
geospatial area.

/search/loa?ulat=$value&ulng=$value&llat=$value&llng=
$value&start=$value&end=$value

Retrieve a summary message for vessels with a specific
threat level within a geospatial area. Note that $threat in
the following example must align with one of the threat
values available in the LOA schema.

/search/loa?ulat=$value&ulng=$value&llat=$value&llng=
$value&$threat=$value

Retrieve a summary of a specific vessel in a geospatial
area.

/search/loa?ulat=$value&ulng=$value&llat=$value&llng=
$value
&VesselNameText=$value&VesselMMSIText=$value&V
esselIMONumberText=$value

*Note that any combination of MMSI, IMO, and Name can be used, all three are not required.

 6. Interfacing with the Security Services
All interactions to publish and consume data within the MISE are secured interactions over SSL
between trusted systems. As a prerequisite to understanding the security implementation
examples in this section, it is highly recommend you first read the following documents:

 National MDA Architecture Plan for an overview of the MISE security approach.

 National MDA Architecture Security Specification for the details of how trusted systems
securely connect to the ISI.

 National MDA Architecture Attribute Specification for an explanation of the common
attributes used for entitlement management.

https://mise.mda.gov/drupal/node/39
https://mise.mda.gov/drupal/node/38
https://mise.mda.gov/drupal/node/35

NATIONAL MDA ARCHITECTURE PLAN APPENDIX A – IMPLEMENTATION GUIDE

11

 OBTAINING X.509 CERTIFICATES 6.1.
Numerous tools and processes are available for creating key pairs and X.509 certificates. The
exact process chosen by a trusted system will vary depending on the platform the trusted
system implementation is based upon, agency procedures, and the chosen root CA.

In some cases a trusted system may need to generate a keypair and a certificate signing request
(CSR) internally using a tool such as OpenSSL or Java’s keytool, and submit the CSR to a root
CA for signing. The following sections provide steps for generating the private key and public
Certificate Signing Request (CSR).

 USING OPENSSL TO GENERATE A PRIVATE KEY AND PUBLIC 6.2.
CERTIFICATE SIGNING REQUEST (CSR)

Issue the following command to create private key and CSR

openssl req -new -nodes -keyout myserver.key -out server.csr -newkey rsa:2048

This creates two files. The file myserver.key contains a private key; do not disclose this file to
anyone. Carefully protect the private key. In particular, be sure to back up the private key, as
there is no means to recover it should it be lost. The private key is used as input in the command
to generate a Certificate Signing Request (CSR).

1. You will now be asked to enter details to be entered into your CSR.
What you are about to enter is what is called a Distinguished Name or a DN. Use the
FQDN as Common Name (CN). The fields email address, optional company name and
challenge password can be left blank for your SSL certificate.

Country Name (2 letter code) [AU]:US

State or Province Name (full name) [Some-State]:California

Locality Name (eg, city) []:San Diego

Organization Name (eg, company) [Internet Widgits Pty Ltd]:Agency One

Organizational Unit Name (eg, section) []:IT

Common Name (eg, YOUR name) []:agencyone.gov

Email Address []:

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password []:

An optional company name []:

2. Your CSR has been created. You can open the server.csr in a text editor to view it.

3. Follow the CA-specific instructions for submitting the CSR to the CA to generate your
SSL certificate.

 USE JAVA'S KEYTOOL TO GENERATE A PRIVATE KEY AND 6.3.
PUBLIC CERTIFICATE SIGNING REQUEST (CSR)

 Using the java keytool command line utility, the first thing you need to do is create a 1.

key store and generate the key pair. Do this with the following command:

NATIONAL MDA ARCHITECTURE PLAN APPENDIX A – IMPLEMENTATION GUIDE

12

keytool -genkey -keysize 2048 -keyalg RSA -alias agencyone -keystore

mykeystore

 Tip: The 2048 in the command above is the key bit length. MISE requires a key bit length 1.
of 2048.

 You will be prompted for a password for the key store. The key password must be at 2.
least 6 characters long.

 Tip: Make a note of the password. If lost it cannot be retrieved. 3.

 You will be asked for several pieces of info which will be used by the MISE Test 4.
Certificate Authority to create your new SSL certificate. When it asks for your first and
last name, make sure you enter the FQDN of your server that will make the connection to
the MISE. Here is an example:

What is your first and last name?

[Unknown]: http://agencyone.mda.gov

What is the name of your organizational unit?

[Unknown]: IT

What is the name of your organization?

[Unknown]: Agency One

What is the name of your City or Locality?

[Unknown]: San Diego

What is the name of your State or Province?

[Unknown]: California

What is the two-letter country code for this unit?

[Unknown]: US

Is CN=http://agencyone.mda.gov, OU=IT, O=Agency One, L=San Diego,

ST=California, C=US correct?

[no]: yes

 You will be prompted for a password for the private key within the key store. If you 5.
press enter at the prompt, the key password is set to the same password as that used for
the key store from the previous step. The key password must be at least 6 characters
long.

 Tip: Make a note of the passwords. If lost they cannot be retrieved. 6.

 Now generate the Certificate Signing Request (CSR) from the private key generated 7.
above using the following command:

 keytool -certreq -alias agencyone -file agencyone.gov.csr -keystore mykeystore

This creates a CSR and stores it in a file named agencyone.gov.csr.

 Follow the CA-specific instructions for submitting the CSR to the CA to generate your 8.
SSL certificate.

Below is an example of what your CSR will look like. This is an example only and cannot be
used to generate your SSL certificate.

-----BEGIN NEW CERTIFICATE REQUEST-----

MIICtTCCAZ0CAQAwcDELMAkGA1UEBhMCVVMxEzARBgNVBAgTCmNhbGlmb3JuaWExEjAQBgNVBAcT

CXNhbiBkaWVnbzETMBEGA1UEChMKYWdlbmN5IG9uZTELMAkGA1UECxMCSVQxFjAUBgNVBAMTDWFn

ZW5jeW9uZS5nb3YwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQCwjMqyx0R2OqhltjXJ

4tH7275YW01+6K6kLOc/yFmfDLK8oSynDoTq4PzO2z1BAhq/8CgkPTs/tHgNphWTlw0c5WpaR487

bVh0dyJwvz3EI6hLmPAyqTvAB2C2aW0zcLzGTSxR8rAhHoX7oOgA3E9xKmoYMVMIZLFN63Tn/F6M

T5NdFdTbkoRzcxpkkVmH6o60Vv6jGTI+zUpdyC7W8QRm/kshQgtjXLeYLACXuLvaKzn69p1TLCss

knRCsOsLjHhJrBmPK3upD9HRZ2bbE+Pp1/QUUVztiHDhnwPyEV6Iq2ZFOAuIF4otQU05DLQMsI28

EPu52GmfDMkPuXZFmYYDAgMBAAGgADANBgkqhkiG9w0BAQUFAAOCAQEAJTwTApJiggCgSxE48+Wi

ATNHe3rHJYPLzFMtRupM0tReLQWA+246g+ZGFHOwRv2VO90mMW/MivoxAnoyyP5J708MNsHo1LMn

NATIONAL MDA ARCHITECTURE PLAN APPENDIX A – IMPLEMENTATION GUIDE

13

bW9kyUuZK22T0lpO3t6BDDix8NWLg5cEGm08sI20iptesemlKq4E/2TxFdEmLpiARD9768WGVTbX

8EB08V2U78A8s5hTMly7hnaywfOm4ezpWllktUlEuzVxGLHkBj7H5CEKPjH02/AZRNYJRYWrzcdO

YS/gUqs/cvqL77QrwOXWjrCEjSKYtibaXNlSbjEnDKbkoKJl0UsKRLAhMs8NI/HvalV1o8J8/ftc

1J1xTgHFYyxRJluV6w==

-----END NEW CERTIFICATE REQUEST-----

 REGISTRATION OF TRUSTED SYSTEM IN TRUST FABRIC 6.4.
Once the necessary X.509 certificate is obtained, your trusted system must be registered in the
trust fabric document by the MISE Management team. You will have an entry in the trust fabric
for each role for which your system is authorized, i.e. data provider and/or data consumer.

Following is an example entry for a provider trusted system:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

<md:EntityDescriptor entityID="https://mise.agencythree.gov/">

 <md:RoleDescriptor

protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol"

 xsi:type="mise:MISEProviderDescriptorType">

 <md:KeyDescriptor use="signing">

 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <ds:X509Data>

 <ds:X509Certificate>

 <!-- Base 64 encoded certificate embedded here

 This is the client certificate which the trusted

 system will present during SSL connection handshake.

 The private key matching this certificate will also

 be used by this trusted system for signing SAML

 assertions.

 -->

 </ds:X509Certificate>

 </ds:X509Data>

 </ds:KeyInfo>

 </md:KeyDescriptor>

 </md:RoleDescriptor>

 <md:ContactPerson contactType="technical">

 <md:Company>Trusted Federal Systems, Inc.</md:Company>

 <md:GivenName>Eric</md:GivenName>

 <md:SurName>Jakstadt</md:SurName>

 <md:EmailAddress>eric.jakstadt@trustedfederal.com</md:EmailAddress>

 <md:TelephoneNumber>404-806-8143</md:TelephoneNumber>

 </md:ContactPerson>

</md:EntityDescriptor>

Now an example entry for a consumer trusted system. Notice in the consuming system entry in
the trust fabric, the trusted system is assigned the appropriate indicator attributes used to make
authorization decisions on queries.

1

2

3

4

5

6

7

<md:EntityDescriptor entityID="https://mise.agencyone.gov/">

 <md:Extensions>

 <gfipm:EntityAttribute FriendlyName="COIIndicator"

 Name="mise:1.2:entity:COIIndicator"

NameFormat="urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified">

 <gfipm:EntityAttributeValue

xsi:type="xs:string">True</gfipm:EntityAttributeValue>

 </gfipm:EntityAttribute>

 <gfipm:EntityAttribute FriendlyName="LawEnforcementIndicator"

https://mise.agencythree.gov/
https://mise.agencythree.gov/
http://www.w3.org/2000/09/xmldsig
http://www.w3.org/2000/09/xmldsig
https://mise.agencyone.gov/
https://mise.agencyone.gov/

NATIONAL MDA ARCHITECTURE PLAN APPENDIX A – IMPLEMENTATION GUIDE

14

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

 Name="mise:1.2:entity:LawEnforcementIndicator"

NameFormat="urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified">

 <gfipm:EntityAttributeValue

xsi:type="xs:string">True</gfipm:EntityAttributeValue>

 </gfipm:EntityAttribute>

 <gfipm:EntityAttribute FriendlyName="PrivacyProtectedIndicator"

 Name="mise:1.2:entity:PrivacyProtectedIndicator"

NameFormat="urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified">

 <gfipm:EntityAttributeValue

xsi:type="xs:string">True</gfipm:EntityAttributeValue>

 </gfipm:EntityAttribute>

 <gfipm:EntityAttribute FriendlyName="OwnerAgencyCountryCode"

 Name="mise:1.2:entity:OwnerAgencyCountryCode"

NameFormat="urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified">

 <gfipm:EntityAttributeValue

xsi:type="xs:string">USA</gfipm:EntityAttributeValue>

 </gfipm:EntityAttribute>

 </md:Extensions>

 <md:RoleDescriptor

protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol"

 xsi:type="mise:MISEConsumerDescriptorType">

 <md:KeyDescriptor use="signing">

 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <ds:X509Data>

 <ds:X509Certificate>

 <!-- Base 64 encoded certificate embedded here

 This is the client certificate which the trusted

 system will present during SSL connection

handshake.

 The private key matching this certificate will

also

 be used by this trusted system for signing SAML

 assertions.

 -->

 </ds:X509Certificate>

 </ds:X509Data>

 </ds:KeyInfo>

 </md:KeyDescriptor>

 </md:RoleDescriptor>

 <md:Organization>

 <md:OrganizationName xml:lang="en">Agency One</md:OrganizationName>

 <md:OrganizationDisplayName xml:lang="en">Agency

 One</md:OrganizationDisplayName>

 <md:OrganizationURL xml:lang="en"><a

href="http://www.agencyone.gov/</md:OrganizationURL">http://www.agencyone.gov/</md

:OrganizationURL>

 </md:Organization>

 <md:ContactPerson contactType="technical">

 <md:Company>Trusted Federal Systems, Inc.</md:Company>

 <md:GivenName>Eric</md:GivenName>

 <md:SurName>Jakstadt</md:SurName>

 <md:EmailAddress>eric.jakstadt@trustedfederal.com</md:EmailAddress>

 <md:TelephoneNumber>404-806-8143</md:TelephoneNumber>

 </md:ContactPerson>

</md:EntityDescriptor>

 DOWNLOAD THE TRUST FABRIC DOCUMENT 6.5.

http://www.w3.org/2000/09/xmldsig
http://www.w3.org/2000/09/xmldsig
http://www.agencyone.gov/
http://www.agencyone.gov/

NATIONAL MDA ARCHITECTURE PLAN APPENDIX A – IMPLEMENTATION GUIDE

15

As discussed in the Security Specification, the trust fabric contains public keys for all trusted
systems that interact with the MISE. The trust fabric endpoint requires HTTPS but does not
require a client certificate or any other method of authentication.

Retrieve the trust fabric document by any standard means, including viewing in any browser, at
the MISE server at /miseresources/TrustFabric.xml

The trust fabric document for the MISE test environment is available at:
https://107.23.66.168:9443/miseresources/TrustFabric.xml

 VALIDATE THE TRUST FABRIC SIGNATURE 6.6.
PROGRAMMATICALLY

The following sample code (written in Java) taken from client toolkit demonstrates validating of
the signed trust fabric document. Since the trust fabric document is a SAML metadata file with
a few simple extensions, this sample code is able to leverage the open source OpenSAML project
to simplify implementation. Trusted system implementations not written in Java, or which
already include other SAML implementations, may also be able to simplify implementation by
relying on existing SAML metadata implementations.

The following code snippet shows how the trust fabric document may be loaded into a DOM
object so the signing certificate can be parsed and the signature on the document validated.

1

2

3

4

5

6

7

8

9

 // read in the trust fabric from a local file location

 FileInputStream fis = new FileInputStream("/local/path/TrustFabric.xml");

 m_domFactory = DocumentBuilderFactory.newInstance();

 m_domFactory.setNamespaceAware(true);

Element domElement =

m_domFactory.newDocumentBuilder().parse(fis).getDocumentElement();

// cryptographic validation of signature

X509Certificate signedByCert = verifyXMLSignature(domElement);

System.out.println(String.format("Signature validation %s", signedByCert == null ?

"FAILED" : "SUCCEEDED"));

The following snippet takes the trust fabric as a DOM object and returns the signing certificate
if it is valid.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

public static X509Certificate verifyXMLSignature(Element target) throws Exception {

 // Validate the signature -- i.e. SAML object is pristine:

 NodeList nl = target.getElementsByTagNameNS(XMLSignature.XMLNS, "Signature");

 if (nl.getLength() == 0)

 return null;

 KeyValueKeySelector kvs = new KeyValueKeySelector();

 DOMValidateContext context = new DOMValidateContext(kvs, nl.item(0));

 // Create a DOM XMLSignatureFactory that will be used to unmarshal the

 // document containing the XMLSignature

 String providerName = System.getProperty("jsr105Provider",

"org.jcp.xml.dsig.internal.dom.XMLDSigRI");

 XMLSignatureFactory fac = XMLSignatureFactory.getInstance("DOM", (Provider)

Class.forName(providerName).newInstance());

 DOMXMLSignature signature = (DOMXMLSignature)

fac.unmarshalXMLSignature(context);

 if (!signature.validate(context))

https://mise.mda.gov/drupal/node/38
https://107.23.66.168:9443/miseresources/TrustFabric.xml
https://mise.mda.gov/tools/

NATIONAL MDA ARCHITECTURE PLAN APPENDIX A – IMPLEMENTATION GUIDE

16

17

18

19

20

 return null;

 return kvs.getUsedCertificate();

}

 IMPLEMENTING MISE SECURITY ATTRIBUTES 6.7.
As detailed in the National MDA Attribute Specification , entitlement management within the
MISE relies on the use of a common set of entity, user, and data attributes to make run-time
authorization decisions as to whether a trusted system and requesting user are authorized to
access a requested information resource.

There are three categories for attributes defined for the National MDA Architecture:

1. Entity Attributes: Attributes that pertain to a trusted system within the MISE.

2. User Attributes: Attributes that pertain to a human user.

3. Data Attributes: Attributes that pertain to data.

Currently data is grouped by LE sensitive (LEI), privacy protected (PPI) and the rest of the
community (COI). The security indicators defined in the attribute specification map to these
groups, i.e. Law Enforcement Indicator, Privacy Protected Indicator, and COI Indicator.
Additionally, there is a one-to-one relationship between the security indicators assigned to data
(data attributes) by information providers to convey sharing restrictions and the indicators
assigned to information consumer trusted systems (entity attributes) and users (user attributes)
to convey their respective privileges.

 APPLYING DATA ATTRIBUTES ON PUBLISH 6.8.
As a Data Provider Trusted System you must tag messages before publishing to the ISI with
metadata to convey any restrictions on the data.

Attribute Name Possible Values Description

SecurityIndicatorText
“LEI” |”PCII”| ”PPI”
|”SBU” |“FSLT”|
“PSO” | “COI” |

Indicates the level of access required to access the data. LEI for Law
Enforcement Sensitive Information, PPI for Privacy Protected
Information, Protected Critical Infrastructure Information,
Sensitive but Unclassified, Federal State Local and Tribal, Private
Sector Only or COI for the rest of the community.

ReleasableIndicator “true” | “false”
Marks data as releasable to the public domain under the
restrictions of the associated security indicator.

ReleasableNationsCode

Space-delimited list
of 3-letter country
codes, ex. “CAN
USA FRA”

Indicates data can only be released to those nations identified by
the country codes. Default value is “USA”.

For example to publish a vessel position messages that is law enforcement sensitive, not
publically releasable, and shareable with only US, these fields will be added to the exchange
element of the publish message as depicted in the example below.

1

<message

xmlns:posex="http://niem.gov/niem/domains/maritime/2.1/position/exchange/3.2"

mda:securityindicatortext="LEI" mda:releasablenationscode="USA"

mda:releasableindicator="false"></message>

https://mise.mda.gov/drupal/node/35
http://niem.gov/niem/domains/maritime/2.1/position/exchange/3.2

NATIONAL MDA ARCHITECTURE PLAN APPENDIX A – IMPLEMENTATION GUIDE

17

 SUPPLYING USER/ENTITY ATTRIBUTES FOR 6.9.
SEARCH/RETRIEVE

 MAP LOCAL USER PRIVILEGES TO MISE SECURITY ATTRIBUTES 6.9.1.
Use the MISE security attributes as defined in the Attribute Specification to assert citizenship
and the access level for the user associated with a query. Citizenship is conveyed using the
CitizenshipCode attribute, mise:1.4:user:CitizenshipCode , with a value equal to the ISO 3-
letter country code.

The access level is conveyed using one or more attributes defined as indicators.

Indicator Attribute Name Description

Law Enforcement
Indicator

mise:1.4:user:LawEnforcementIndicator
User requires and qualifies for access to law
enforcement information in accordance with all
appropriate statutes and legislation.

Privacy Protected
Indicator

mise:1.4:user:PrivacyProtectedIndicator
User requires and qualifies for access to privacy
protected information in accordance with all
appropriate statutes and legislation.

Community of
Interest Indicator

mise:1.4:user:COIIndicator
Minimum access level assigned to user that requires
access to information shared by the MISE
community.

 FORMING SAML USER ASSERTION 6.9.2.
The following code snippet provides an example of building the user assertions and adding them
to the context of the request. The full example is shown in the section on Interfacing with the
Search Services.

1

2

3

4

5

6

7

8

9

10

11

12

//Form the user assertion

 String assertingPartyID = "test.client";

 AssertionBuilder builder = new AssertionBuilder(assertingPartyID);

 builder.addStandardConditions(Constants.MISE_AUDIENCE_RESTRICTION,

10*60); // valid for 10 minutes

 builder.addAttribute("ElectronicIdentityId",

"gfipm:2.0:user:ElectronicIdentityId", "testuser@testsystem.gov");

 builder.addAttribute("FullName", "gfipm:2.0:user:FullName", "Test T.

User");

 Attribute attr = builder.addAttribute("CitizenshipCode",

"mise:1.4:user:CitizenshipCode", "USA");

 builder.addAttribute("LawEnforcementIndicator",

"mise:1.4:user:LawEnforcementIndicator", "true");

 builder.addAttribute("PrivacyProtectedIndicator",

"mise:1.4:user:PrivacyProtectedIndicator", "true");

 builder.signUsingPkcs12(assertingPartyID,

FilenameUtils.separatorsToSystem(keystorePath), keystorePass);

https://mise.mda.gov/drupal/node/35
https://mise.mda.gov/drupal/node/30
https://mise.mda.gov/drupal/node/30

NATIONAL MDA ARCHITECTURE PLAN APPENDIX A – IMPLEMENTATION GUIDE

18

13

14

15

16

 Assertion assertion = builder.getAssertion();

 //Important to not use SAMLUtils.asPrettyXMLString(object) as it will

cause the signature validation to fail

 HttpResponse response = m_client.post("/MDAUserSessionService/login",

null, SAMLUtils.asXMLString(assertion),

 7. Interfacing with the Publication Service
The publication service provides the interface to publish information products to the MISE. The
complete interface description for publish is in the Code Overview page for the code download
and library details.

This example walks through publishing a single Position instance to the position interface,
assuming that the publishing system can already interface with the security services, including
registering the publishing system as a trusted system in the Trust Fabric.

The instance file that might be published via this operation can be downloaded here. This file
contains a NIEM-M Position instance containing three position reports for the MV Example.

The actual XML for a publish operation would normally be assembled from a database or some
other storage location. The example below just reads the XML from a file.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

package test;

import gov.mda.trustfabric.TrustFabric;

import gov.mda.util.RestServiceClient;

import java.io.File;

import java.io.FileInputStream;

import java.security.cert.CertificateFactory;

import java.security.cert.X509Certificate;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.xpath.XPathFactory;

import org.apache.commons.io.FileUtils;

import org.apache.commons.io.FilenameUtils;

import org.apache.http.HttpResponse;

import org.apache.http.entity.ContentType;

public class TestPublishClient {

 /**

 * @param args

 */

 public static void main(String[] args) {

 RestServiceClient m_client;

 /* Strongly recommend that these be loaded from a configuration file

dynamically in production code */

 String miseCert = "C:\\Users\\user\\Documents\\ca\\ca.crt"; //public

certificate for the MISE

 String trustFabricUrl = "https://mise.mda.gov/mise

resources/TrustFabric.xml"; //trust fabric URL on the MISE server

 String trustFabricBackupPath =

https://mise.mda.gov/drupal/node/36%3EPublish%20Specification%3C/a%3E.%20See%20the%20%3Ca%20href=
https://mise.mda.gov/drupal/node/27
https://mise.mda.gov/drupal/sites/default/files/SamplePosition.xml
https://mise.mda.gov/miseresources/TrustFabric.xml
https://mise.mda.gov/miseresources/TrustFabric.xml

NATIONAL MDA ARCHITECTURE PLAN APPENDIX A – IMPLEMENTATION GUIDE

19

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

"C:\\Users\\user\\Documents\\TrustFabricBackup.xml"; //backup local file location

for a cached version of the trust fabric

 String serverScheme = "https";

 String serverHost = "mise.mda.gov";

 String serverPort = "9443";

 String serverBasePath = "/services";

 String keystorePath = "C:\\Users\\user\\Documents\\server.p12"; //keystore

which contains the certificate and private key for this trusted system

 String keystorePass = "password";

 try {

 FileInputStream isCert = new

FileInputStream(FilenameUtils.separatorsToSystem(miseCert));

 CertificateFactory certFactory =

CertificateFactory.getInstance("X.509");

 X509Certificate cert = (X509Certificate)

certFactory.generateCertificate(isCert);

 TrustFabric.initializeFromURL(trustFabricUrl,

trustFabricBackupPath, cert);

 m_client = new RestServiceClient(serverScheme, serverHost,

Integer.valueOf(serverPort), serverBasePath);

 m_client.setClientCert(FilenameUtils.separatorsToSystem(keystorePath),

keystorePass);

 String body = null;

 FileUtils.readFileToString(new File("SamplePosition.xml"), body);

 HttpResponse response = m_client.put("/publish/pos/id", "", body,

ContentType.APPLICATION_XML); //perform the request

 } catch(Exception e) {

 e.printStackTrace();

 }

 }

}

Note again that all the configuration parameters should not be hardcoded as strings in
production code, but should be loaded dynamically from a configuration file or configuration
database.

Examining the code in detail, the following 4 lines load the SSL certificate for the MISE from the
file system, and initialize the Trust Fabric. The Trust Fabric code attempts to load the MISE-
hosted Trust Fabric from the MISE endpoint first, and can fall back to a local copy if the MISE
endpoint cannot be accessed.

1

2

3

4

5

6

FileInputStream isCert = new

FileInputStream(FilenameUtils.separatorsToSystem(miseCert));

CertificateFactory certFactory = CertificateFactory.getInstance("X.509");

X509Certificate cert = (X509Certificate) certFactory.generateCertificate(isCert);

TrustFabric.initializeFromURL(trustFabricUrl, trustFabricBackupPath, cert);

NATIONAL MDA ARCHITECTURE PLAN APPENDIX A – IMPLEMENTATION GUIDE

20

The next section of the code creates the MISE Rest Client and initializes it with the client key
store. The client key store must contain the private key corresponding to the certificate
registered for the publishing system in the Trust Fabric.

1

2

3

m_client = new RestServiceClient(serverScheme, serverHost,

Integer.valueOf(serverPort), serverBasePath);

m_client.setClientCert(FilenameUtils.separatorsToSystem(keystorePath),

keystorePass);

Finally, the last few lines read the XML from a file and publish it to the MISE. The /id on the
publish URL must actually be a unique ID for this Position message in the publishing system.

1

2

3

4

String body = null;

FileUtils.readFileToString(new File("SamplePosition.xml"), body);

HttpResponse response = m_client.put("/publish/pos/id", "", body,

ContentType.APPLICATION_XML); //perform the request

In production, the publishing, response-handling, and error-handling code must be more robust,
to deal with the various error codes that might be returned by the MISE depending on the
interaction with the security services and the outcome of the publish operation.

Please note that the current base URL for the MSIE is /services/MDAService/, followed by
publish, search, or retrieve, as described in this guide.

 8. Interfacing with the Delete Service
The delete interface on the MISE is an extension of the publish interface. To delete a previously
published information product, the publishing system need only issue a DELETE HTTP request
with the same parameters as the original publish message. The complete interface description
for delete is in the Publish Specification. See the Code Overview1 page for the code download
and library details. The ClientTest project containing these code examples is also available on
that page.

The following code example is structurally identical to the publish example, save for the actual
HTTP operation on line 47, which is a DELETE, instead of a PUT with XML content.

1

2

3

4

5

6

7

8

9

10

11

12

13

package test;

import gov.mda.trustfabric.TrustFabric;

import gov.mda.util.RestServiceClient;

import java.io.FileInputStream;

import java.security.cert.CertificateFactory;

import java.security.cert.X509Certificate;

import org.apache.commons.io.FilenameUtils;

import org.apache.http.HttpResponse;

public class TestDeleteClient {

1 https://mise.mda.gov/drupal/node/25

NATIONAL MDA ARCHITECTURE PLAN APPENDIX A – IMPLEMENTATION GUIDE

21

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

 /**

 * @param args

 */

 public static void main(String[] args) {

 RestServiceClient m_client;

 /* Strongly recommend that these be loaded from a configuration file

dynamically in production code */

 String miseCert = "C:\\Users\\user\\Documents\\ca\\ca.crt"; //public

certificate for the MISE

 String trustFabricUrl = "https://mise.mda.gov/mise

resources/TrustFabric.xml"; //trust fabric URL on the MISE server

 String trustFabricBackupPath =

"C:\\Users\\user\\Documents\\TrustFabricBackup.xml"; //backup local file location

for a cached version of the trust fabric

 String serverScheme = "https";

 String serverHost = "mise.mda.gov";

 String serverPort = "9443";

 String serverBasePath = "/services";

 String keystorePath = "C:\\Users\\user\\Documents\\server.p12"; //keystore

which contains the certificate and private key for this trusted system

 String keystorePass = "password";

 try {

 FileInputStream isCert = new

FileInputStream(FilenameUtils.separatorsToSystem(miseCert));

 CertificateFactory certFactory =

CertificateFactory.getInstance("X.509");

 X509Certificate cert = (X509Certificate)

certFactory.generateCertificate(isCert);

 TrustFabric.initializeFromURL(trustFabricUrl, trustFabricBackupPath,

cert);

 m_client = new RestServiceClient(serverScheme,

serverHost, Integer.valueOf(serverPort), serverBasePath);

 m_client.setClientCert(FilenameUtils.separatorsToSystem(keystorePath),

keystorePass);

 HttpResponse response = m_client.delete("/publish/pos/id", "", null,

null);

 } catch(Exception e) {

 e.printStackTrace();

 }

 }

}

For the DELETE operation, the /id on the publish URL must actually be the ID under which the
information product was originally published.

1 HttpResponse response = m_client.delete("/publish/pos/id", "", null, null);

NATIONAL MDA ARCHITECTURE PLAN APPENDIX A – IMPLEMENTATION GUIDE

22

In production, the delete, response-handling, and error-handling code must be more robust, to
deal with the various error codes that might be returned by the MISE depending on the
interaction with the security services and the outcome of the delete operation.

Please note that the current base URL for the MSIE is /services/MDAService/, followed by
publish, search, or retrieve, as described in this guide.

 9. Interfacing with the Search Service
The search service provides the interface to search for information products on the MISE. The
complete interface description for search is in the Search/Retrieve Specification. See the Code
Overview page for the code download and library details. The ClientTest project containing
these code examples is also available on that page.

This example walks through a query for Position reports based on the first Position User Story,
a search bounded by geospatial area and time. This example assumes the searching system can
interface with the MISE security services, including registering the system as a trusted system in
the Trust Fabric.

Unlike the previous two examples which only require the SSL handshake with the MISE, the
search and retrieve operations require that the consumer system pass the entitlement attributes
of the user. The meanings of the attributes are discussed in detail in the Attribute Specification.
These entitlement attributes are provided to the MISE via a SAML assertion. When the SAML
assertion is validated, the MISE returns a session cookie to the client system, which must be
provided for all subsequent search and retrieve operations.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

package test;

import gov.mda.Constants;

import gov.mda.saml.AssertionBuilder;

import gov.mda.saml.SAMLUtils;

import gov.mda.trustfabric.TrustFabric;

import gov.mda.util.RestServiceClient;

import java.io.FileInputStream;

import java.security.cert.CertificateFactory;

import java.security.cert.X509Certificate;

import org.apache.commons.io.FilenameUtils;

import org.apache.http.HttpResponse;

import org.apache.http.entity.ContentType;

import org.apache.http.util.EntityUtils;

import org.opensaml.saml2.core.Assertion;

import org.opensaml.saml2.core.Attribute;

public class TestSearchClient {

 /**

 * @param args

 */

 public static void main(String[] args) {

 RestServiceClient m_client;

 /* Strongly recommend that these be loaded from a configuration file

https://mise.mda.gov/drupal/node/25
https://mise.mda.gov/drupal/node/25
https://mise.mda.gov/drupal/node/26
https://mise.mda.gov/drupal/node/27
https://mise.mda.gov/drupal/node/35

NATIONAL MDA ARCHITECTURE PLAN APPENDIX A – IMPLEMENTATION GUIDE

23

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

dynamically in production code */

 String miseCert = "C:\\Users\\user\\Documents\\ca\\ca.crt"; //public

certificate for the MISE

 String trustFabricUrl = "https://mise.mda.gov/mise

resources/TrustFabric.xml"; //trust fabric URL on the MISE server

 String trustFabricBackupPath =

"C:\\Users\\user\\Documents\\TrustFabricBackup.xml"; //backup local file location

for a cached version of the trust fabric

 String serverScheme = "https";

 String serverHost = "mise.mda.gov";

 String serverPort = "9443";

 String serverBasePath = "/services";

 String keystorePath = "C:\\Users\\user\\Documents\\server.p12"; //keystore

which contains the certificate and private key for this trusted system

 String keystorePass = "password";

 try {

 FileInputStream isCert = new

FileInputStream(FilenameUtils.separatorsToSystem(miseCert));

 CertificateFactory certFactory =

CertificateFactory.getInstance("X.509");

 X509Certificate cert = (X509Certificate)

certFactory.generateCertificate(isCert);

 TrustFabric.initializeFromURL(trustFabricUrl,

trustFabricBackupPath, cert);

 m_client = new RestServiceClient(serverScheme,

serverHost, Integer.valueOf(serverPort), serverBasePath);

 m_client.setClientCert(FilenameUtils.separatorsToSystem(keystorePath),

keystorePass);

 //Form the user assertion

 String assertingPartyID = "test.client";

 AssertionBuilder builder = new AssertionBuilder(assertingPartyID);

 builder.addStandardConditions(Constants.MISE_AUDIENCE_RESTRICTION,

10*60); // valid for 10 minutes

 builder.addAttribute("ElectronicIdentityId",

"gfipm:2.0:user:ElectronicIdentityId", "testuser@testsystem.gov");

 builder.addAttribute("FullName", "gfipm:2.0:user:FullName", "Test T.

User");

 Attribute attr = builder.addAttribute("CitizenshipCode",

"mise:1.4:user:CitizenshipCode", "USA");

 builder.addAttribute("LawEnforcementIndicator",

"mise:1.4:user:LawEnforcementIndicator", "true");

 builder.addAttribute("PrivacyProtectedIndicator",

"mise:1.4:user:PrivacyProtectedIndicator", "true");

 builder.signUsingPkcs12(assertingPartyID,

FilenameUtils.separatorsToSystem(keystorePath), keystorePass);

 Assertion assertion = builder.getAssertion();

 //Important to not use SAMLUtils.asPrettyXMLString(object) as it will

cause the signature validation to fail

 HttpResponse response = m_client.post("/MDAUserSessionService/login",

null, SAMLUtils.asXMLString(assertion), ContentType.APPLICATION_XML);

 EntityUtils.consumeQuietly(response.getEntity());

 response = m_client.get("/MDAService/search/pos?ulat=3.75&ulng=-

2.0&llat=-2.75&llng=3.0&start=2012-06-10T12:10:00&end=2013-012-25T12:30:00", null);

NATIONAL MDA ARCHITECTURE PLAN APPENDIX A – IMPLEMENTATION GUIDE

24

70

71

72

73

74

75

 //do something with the response

 } catch(Exception e) {

 e.printStackTrace();

 }

 }

}

Note again that all the configuration parameters should not be hardcoded as strings in
production code, but should be loaded dynamically from a configuration file or configuration
database.

Examining the code in detail, the following 4 lines load the SSL certificate for the MISE from the
file system, and initialize the Trust Fabric. The Trust Fabric code attempts to load the MISE-
hosted Trust Fabric from the MISE endpoint first, and can fall back to a local copy if the MISE
endpoint cannot be accessed.

1

2

3

4

5

FileInputStream isCert = new

FileInputStream(FilenameUtils.separatorsToSystem(miseCert));

CertificateFactory certFactory = CertificateFactory.getInstance("X.509");

X509Certificate cert = (X509Certificate) certFactory.generateCertificate(isCert);

TrustFabric.initializeFromURL(trustFabricUrl, trustFabricBackupPath, cert);

The next section of the code creates the MISE Rest Client and initializes it with the client key
store. The client key store must contain the private key corresponding to the certificate
registered for the publishing system in the Trust Fabric.

1

2

3

m_client = new RestServiceClient(serverScheme, serverHost,

Integer.valueOf(serverPort), serverBasePath);

m_client.setClientCert(FilenameUtils.separatorsToSystem(keystorePath),

keystorePass);

The next section of the code deals with the creation of the SAML assertion with the user's
attributes. The AssertionBuilder is a utility provided by the MDA toolkit to aid in creating the
SAML. The required attributes are defined in the attribute specification. Every assertion must
provide the ElectronicIdentityID, FullName, CitizenshipCode, and entitlement attributes. Note
that the example below shows how to explicitly set the expiration time for the assertion. If not
included, the sessions formed by each assertion are timed-out automatically.

1

2

3

4

5

String assertingPartyID = "test.client";

AssertionBuilder builder = new AssertionBuilder(assertingPartyID);

builder.addStandardConditions(Constants.MISE_AUDIENCE_RESTRICTION, 10*60); // valid

for 10 minutes

builder.addAttribute("ElectronicIdentityId", "gfipm:2.0:user:ElectronicIdentityId",

"testuser@testsystem.gov");

builder.addAttribute("FullName", "gfipm:2.0:user:FullName", "Test T. User");

The following code shows how to set the citizenship and entitlement information. These
attributes are mapped from the consumer system's internal user database.

1

Attribute attr = builder.addAttribute("CitizenshipCode",

"mise:1.4:user:CitizenshipCode", "USA");

NATIONAL MDA ARCHITECTURE PLAN APPENDIX A – IMPLEMENTATION GUIDE

25

2

3

builder.addAttribute("LawEnforcementIndicator",

"mise:1.4:user:LawEnforcementIndicator", "true");

builder.addAttribute("PrivacyProtectedIndicator",

"mise:1.4:user:PrivacyProtectedIndicator", "true");

As the final step in the process to create the SAML assertion, the assertion must be signed using
the private key of the consumer system. This is the same private key/key store used to establish
the SSL connection. Note that this signing operation explicitly includes the assertingPartyID,
which should match the entity ID of the consumer system registered with the Trust Fabric.

1

2

builder.signUsingPkcs12(assertingPartyID,

FilenameUtils.separatorsToSystem(keystorePath), keystorePass);

Assertion assertion = builder.getAssertion();

Once the assertion has been created, the HTTP request for the session and the search can be
performed. Prior to the actual request, the consuming system must establish a session with the
MISE with the entitlements for the requesting user. This code makes that request using the
assertion that was just created. The RestClient internally stores the session cookie provided
back by the MISE to use in future requests.

1

2

3

//Important to not use SAMLUtils.asPrettyXMLString(object) as it will cause the

signature validation to fail

HttpResponse response = m_client.post("/MDAUserSessionService/login", null,

SAMLUtils.asXMLString(assertion), ContentType.APPLICATION_XML);

EntityUtils.consumeQuietly(response.getEntity());

Finally, once the assertion has been created and the session established, the search request can
be made. The search request shown requests all Position instances in the specified bounding
box, published in the specified time period. This will return an Atom feed containing summaries
of all matching records in the MISE. The retrieve operation for each of the individual records in
the Atom feed is discussed in the next section.

1

response = m_client.get("/MDAService/search/pos?ulat=3.75&ulng=-2.0&llat=-

2.75&llng=3.0&start=2012-06-10T12:10:00&end=2013-012-25T12:30:00", null);

In production, the searching response-handling, and error-handling code must be more robust,
to deal with the various error codes that might be returned by the MISE depending on the
interaction with the security services and the outcome of the search operation.

Please note that the current base URL for the MISE is /services/MDAService/, followed by
publish, search, or retrieve, as described in this guide.

 10. Interfacing with the Retrieve Service
Once a search operation has been performed, the Retrieve interface on the MISE allows a
consuming system to retrieve the complete NIEM-M XML instance of any record. Alternately,
the retrieve URL for any record can be accessed directly if known, bypassing the search
operation entirely.

NATIONAL MDA ARCHITECTURE PLAN APPENDIX A – IMPLEMENTATION GUIDE

26

The complete interface description for search is in the Search/Retrieve Specification. See the
Code Overview page for the code download and library details. The ClientTest project
containing these code examples is also available on that page.

Each record published to the MISE creates a unique retrieve URL for that record. As long as that
record exists in the MISE cache, it can be accessed via that URL. The following example
demonstrates the retrieve operation. As with the search, retrieve requires that the consumer
system pass the entitlement attributes of the user. The meanings of the attributes are discussed
in detail in the Attribute Specification. These entitlement attributes are provided to the MISE
via a SAML assertion. When the SAML assertion is validated, the MISE returns a session cookie
to the client system, which must be provided for all subsequent retrieve operations.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

package test;

import gov.mda.Constants;

import gov.mda.saml.AssertionBuilder;

import gov.mda.saml.SAMLUtils;

import gov.mda.trustfabric.TrustFabric;

import gov.mda.util.RestServiceClient;

import java.io.FileInputStream;

import java.security.cert.CertificateFactory;

import java.security.cert.X509Certificate;

import org.apache.commons.io.FilenameUtils;

import org.apache.http.HttpResponse;

import org.apache.http.entity.ContentType;

import org.opensaml.saml2.core.Assertion;

import org.opensaml.saml2.core.Attribute;

public class TestRetrieveClient {

 /**

 * @param args

 */

 public static void main(String[] args) {

 RestServiceClient m_client;

 /* Strongly recommend that these be loaded from a configuration file

dynamically in production code */

 String miseCert = "C:\\Users\\user\\Documents\\ca\\ca.crt"; //public

certificate for the MISE

 String trustFabricUrl = "https://mise.mda.gov/mise

resources/TrustFabric.xml"; //trust fabric URL on the MISE server

 String trustFabricBackupPath =

"C:\\Users\\user\\Documents\\TrustFabricBackup.xml"; //backup local file location

for a cached version of the trust fabric

 String serverScheme = "https";

 String serverHost = "mise.mda.gov";

 String serverPort = "9443";

 String serverBasePath = "/services";

 String keystorePath = "C:\\Users\\user\\Documents\\server.p12"; //keystore

which contains the certificate and private key for this trusted system

 String keystorePass = "password";

 try {

 FileInputStream isCert = new

FileInputStream(FilenameUtils.separatorsToSystem(miseCert));

https://mise.mda.gov/drupal/node/25
https://mise.mda.gov/drupal/node/35
https://mise.mda.gov/miseresources/TrustFabric.xml
https://mise.mda.gov/miseresources/TrustFabric.xml

NATIONAL MDA ARCHITECTURE PLAN APPENDIX A – IMPLEMENTATION GUIDE

27

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

 CertificateFactory certFactory =

CertificateFactory.getInstance("X.509");

 X509Certificate cert = (X509Certificate)

certFactory.generateCertificate(isCert);

 TrustFabric.initializeFromURL(trustFabricUrl, trustFabricBackupPath,

cert);

 m_client = new RestServiceClient(serverScheme,

serverHost, Integer.valueOf(serverPort), serverBasePath);

 m_client.setClientCert(FilenameUtils.separatorsToSystem(keystorePath),

keystorePass);

 //Form the user assertion

 String assertingPartyID = "test.client";

 AssertionBuilder builder = new AssertionBuilder(assertingPartyID);

 builder.addStandardConditions(Constants.MISE_AUDIENCE_RESTRICTION,

10*60); // valid for 10 minutes

 builder.addAttribute("ElectronicIdentityId",

"gfipm:2.0:user:ElectronicIdentityId", "testuser@testsystem.gov");

 builder.addAttribute("FullName", "gfipm:2.0:user:FullName", "Test T.

User");

 Attribute attr = builder.addAttribute("CitizenshipCode",

"mise:1.4:user:CitizenshipCode", "USA");

 builder.addAttribute("LawEnforcementIndicator",

"mise:1.4:user:LawEnforcementIndicator", "true");

 builder.addAttribute("PrivacyProtectedIndicator",

"mise:1.4:user:PrivacyProtectedIndicator", "true");

 builder.signUsingPkcs12(assertingPartyID,

FilenameUtils.separatorsToSystem(keystorePath), keystorePass);

 Assertion assertion = builder.getAssertion();

 //Important to not use SAMLUtils.asPrettyXMLString(object) as it will

cause the signature validation to fail

 HttpResponse response = m_client.post("/MDAUserSessionService/login",

null, SAMLUtils.asXMLString(assertion), ContentType.APPLICATION_XML);

 String entityID = "https%3A%2F%2Fmise.agencyone.gov%2F";

 String uuid = "79869883848892520";

 response = m_client.get("/MDAService/retrieve/ian?entityid=" + entityID

+ "&recordid=" + uuid, null);

 //do something with the response

 } catch(Exception e) {

 e.printStackTrace();

 }

 }

}

Note that all the configuration parameters should not be hardcoded as strings in production
code, but should be loaded dynamically from a configuration file or configuration database.

Examining the code in detail, the following 4 lines load the SSL certificate for the MISE from the
file system, and initialize the Trust Fabric. The Trust Fabric code attempts to load the MISE-
hosted Trust Fabric from the MISE endpoint first, and can fall back to a local copy if the MISE
endpoint cannot be accessed.

NATIONAL MDA ARCHITECTURE PLAN APPENDIX A – IMPLEMENTATION GUIDE

28

1

2

3

4

5

FileInputStream isCert = new

FileInputStream(FilenameUtils.separatorsToSystem(miseCert));

CertificateFactory certFactory = CertificateFactory.getInstance("X.509");

X509Certificate cert = (X509Certificate) certFactory.generateCertificate(isCert);

TrustFabric.initializeFromURL(trustFabricUrl, trustFabricBackupPath, cert);

The next section of the code creates the MISE Rest Client and initializes it with the client key
store. The client key store must contain the private key corresponding to the certificate
registered for the publishing system in the Trust Fabric.

1

2

3

m_client = new RestServiceClient(serverScheme, serverHost,

Integer.valueOf(serverPort), serverBasePath);

m_client.setClientCert(FilenameUtils.separatorsToSystem(keystorePath),

keystorePass);

The next section of the code deals with the creation of the SAML assertion with the user's
attributes. The AssertionBuilder is a utility provided by the MDA toolkit to aid in creating the
SAML. The required attributes are defined in the attribute specification. Every assertion must
provide the ElectronicIdentityID, FullName, CitizenshipCode, and entitlement attributes. Note
that the example below shows how to explicitly set the expiration time for the assertion. If not
included, the sessions formed by each assertion are timed-out automatically.

1

2

3

4

5

String assertingPartyID = "test.client";

AssertionBuilder builder = new AssertionBuilder(assertingPartyID);

builder.addStandardConditions(Constants.MISE_AUDIENCE_RESTRICTION, 10*60); // valid

for 10 minutes

builder.addAttribute("ElectronicIdentityId", "gfipm:2.0:user:ElectronicIdentityId",

"testuser@testsystem.gov");

builder.addAttribute("FullName", "gfipm:2.0:user:FullName", "Test T. User");

The following code shows how to set the citizenship and entitlement information. These
attributes are mapped from the consumer system's internal user database.

1

2

3

Attribute attr = builder.addAttribute("CitizenshipCode",

"mise:1.4:user:CitizenshipCode", "USA");

builder.addAttribute("LawEnforcementIndicator",

"mise:1.4:user:LawEnforcementIndicator", "true");

builder.addAttribute("PrivacyProtectedIndicator",

"mise:1.4:user:PrivacyProtectedIndicator", "true");

As the final step in the process to create the SAML assertion, the assertion must be signed using
the private key of the consumer system. This is the same private key/key store used to establish
the SSL connection. Note that this signing operation explicitly includes the assertingPartyID,
which should match the entity ID of the consumer system registered with the Trust Fabric.

1

2

builder.signUsingPkcs12(assertingPartyID,

FilenameUtils.separatorsToSystem(keystorePath), keystorePass);

Assertion assertion = builder.getAssertion();

Once the assertion has been created, the HTTP request for the session and the retrieve can be
performed. Prior to the actual request, the consuming system must establish a session with the
MISE with the entitlements for the requesting user. This code makes that request using the

NATIONAL MDA ARCHITECTURE PLAN APPENDIX A – IMPLEMENTATION GUIDE

29

assertion that was just created. The RestClient internally stores the session cookie provided
back by the MISE to use in future requests.

1

2

//Important to not use SAMLUtils.asPrettyXMLString(object) as it will cause the

signature validation to fail

HttpResponse response = m_client.post("/MDAUserSessionService/login", null,

SAMLUtils.asXMLString(assertion), ContentType.APPLICATION_XML);

Finally, once the assertion has been created and the session established, the retrieve request can
be made. Each record has an ID that is unique to the publishing system, so the entity ID/record
ID pair provides a unique key for the record. The entity ID in each case is the same as the entity
ID in the trust fabric.

1

2

3

String entityID = "https%3A%2F%2Fmise.agencyone.gov%2F";

String uuid = "79869883848892520";

response = m_client.get("/MDAService/retrieve/ian?entityid=" + entityID +

"&recordid=" + uuid, null);

In production, the response-handling and error-handling code must be more robust, to deal with
the various error codes that might be returned by the MISE depending on the interaction with
the security services and the outcome of the retrieve operation.

Please note that the current base URL for the MISE is /services/MDAService/, followed by
publish, search, or retrieve, as described in this guide.

 11. Testing on the Test Service Platform
Once the initial development work has been completed, the operation of the code can be tested
against the MISE Test Platform. The following steps detail the process to test.

All information exchanged on the Test Platform must be TEST ONLY. No operational data may
be exchanged on the Test Platform

1. Contact the MISE Engineering Team to obtain a test key store. The test key store
provides the private key and certificate for one of the identities in the test Trust Fabric.
This will allow connections with the security services on the MISE Test Platform.

2. Test the SSL handshake process with the Test Platform. Using the test key store, it
should be possible to make the initial SSL connection, enabling further testing. Test the

3. Once the SSL connection has been established, test information can be published. Test,
publish, and update for success and error conditions.

4. With the SSL connection, the delete operation can also be tested. Test delete for both
success and error conditions.

5. If the search and retrieve services are required, the SAML assertions for user entitlement
exchange should be tested. Ensure that the trusted system code can create and sign the
necessary assertions to pass user entitlement information. Once a SAML assertion is
correctly passed to the Test Platform, it will return a session cookie representing that
user entitlement session, enabling access to the search and retrieve services. This test

NATIONAL MDA ARCHITECTURE PLAN APPENDIX A – IMPLEMENTATION GUIDE

30

process should also test that the trusted system code correctly separates sessions,
handles errors, logs out, and handles SAML re-assertion when a session expires.

6. Once user entitlement sessions can be established, the search service can be tested. Test
that issuing queries for previously published information is successful. Test for error
conditions and handling empty responses. Finally, if a query will return too much
information, the MISE will issue a 413 error code. Make sure this case is handled,
typically by refining and re-issuing the query.

7. The final operation to test is retrieve. Using the results of a search, check that the full
NIEM-M instance document can be retrieved. Again, make sure that error conditions are
correctly handled

8. For a system that does both publish and search/retrieve, a final end-to-end test can be
performed by publishing and then searching for and retrieving an information product or
a set of products.

Testing a publishing system requires steps 1-4, since user entitlements and session handling is
not required for publish and delete. Testing a search/retrieve consumer system requires steps 1,2,
and 5-8. The MISE Engineering Team is available to help with error logs and debugging code on
the MISE side. The Specifications detail all of the error code and header information that might
be returned by the MISE for success and failure states in the interaction.

 12. Going Live on the Integration Platform
Once the Testing is complete, the trusted system development team should perform the
following actions in conjunction with the MISE Engineering Team to go live on the MISE
Integration Platform.

1. Provide the public certificate for the private key that will be used for all interactions
with the MISE Integration Platform.

2. The MISE engineering team will place this certificate and the trusted system information
in the Trust Fabric and sign the new Trust Fabric with the MISE private key as
discussed in the Security Specification.

3. At an agreed-upon time, the new Trust Fabric will be loaded on the MISE Integration
Platform and made available to all trusted systems. This is a hot-reload operation, which
does not require that the MISE Integration Platform be taken offline.

4. The trusted system can now begin publishing to and consuming information from the
MISE. The first publish/search/retrieve operations should be monitored by both the
trusted system development team and the MISE Engineering Team to ensure successful
operation and if any troubleshooting is required.

https://mise.mda.gov/drupal/node/34
https://mise.mda.gov/drupal/node/38

NATIONAL MDA ARCHITECTURE PLAN

31

VERSION 3.0

RELEASE 1

FEBRUARY 2015

